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ABSTRACT 

Envelope solitons for surface waves in deep water 

are studied using the coupled equation for the Fourier 

amplitudes of the surface displacement.  Comparison is 

made with some wave-tank experiments of Feir.  A linear 

stability analysis is made for an imposed transverse ripple 

A slowly growing instability is found at wavelengths com- 

parable to, or longer than, the length of the soliton.  A 

slowly developing instability is found also for a soliton 

propagating through a train of waves of wavelength appre- 

ciably smaller than that of the soliton.  A soliton pro- 

pagating through a train of waves with wave-length much 

larger than that of the soliton exhibits gross distortion 

due to the orbital fluid velocity of the wavetrain.  This 

distortion is to some extent reversible, as the soliton 

tends to "recover" when the wavetrain is damped to zero 

amplitude. 
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1.  INTRODUCTION 

v- In this report we discuss the effect of the nonlinear 
s 

terms in the eigenmode equations given by West, Watson and 
* m Thomson (1974)  on the evolution of a narrow spectrum of 

gravity waves on the ocean surface.  This spectrum produces 
.:■■ 

an envelope of a carrier wavenumber k,, and the nonlinear 

equation of evolution of the envelope is found to have the 

form of a nonlinear Schrbdinger equation, as discussed by 

Davey (1972).  The envelope represents a wavepacket propaga- 

ting on the ocean surface.  The propagation of a symmetric 

;■•        wavepacket of deep water waves was studied by Lighthill 

(1965,1967).  In his analysis nonlinear interactions led to 

the development of a nonsymmetric shape and a peaking of the 

packet envelope function.  The relation between the eigen- 

mode equations and the averaged Lagrangian technique developed 

by Whitham (1965,1967) for water waves is also iiscussed. 

That certain waveforms have a persistent shape due 

to the balancing of nonlinear and dispersive effects has been 

observed by Benney and Newell (1967).  Experimental studies 

oE such wavetrains propagating in wave tanks have been 

reported by Feir (1965) and by Lake and Yuen (1975).  The 

observed properties of these wave systems seem to be consis- 

tent with theoretical expectations [e.g. see, Chu and Mei 

(1970, (1971)J.  The Nonlinear Schrödinger equation describes 

* 
This reference will hereafter be referred to as I or Part I. 
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the space time evolution of the envelope function of a 

narrow bandwidth train of deep water waves.  It is shown 

in Section 2 that the nonlinear Schrodinger equation has 

soliton solutions for an initially narrow spectrum as dis- 

cussed by Kadomtsev and Karpman (1971) and Zakharov and 

Shabat (1972). 

The effect of spectral broadening on the nonlinear 

interaction is investigated numerically using the code 

developed in Part I.  In I the authors make a numerical 

analysis of the coupled mode equations describing the non- 

linear interaction of surface gravity waves.  In this 

analysis a tendency for "bumps" in the envelope of a wave- 

train to grow was noted.  Indeed, unless care was taken to 

avoid such "bumps" in selecting the initial conditions, the 

growth of these tended to obscure the other phenomena being 

studied. 

In Section 2 the nonlinear Schrodinger equation 

is obtained as an approximation to the coupled mode equations. 

Solutions for envelope solitons and the Benjamin-Fier 

instability criteria will be noted for subsequent reference 

in Section 3.  Some numerical examples of the propagation 

and distortion of solitons are also given in Section 3 and 

the calculated results are compared with observations from 

wavetanks. 

Soliton stability is studied in Section 4.  It is 

shov/n that a periodic modulation parallel to the wavecrests 

-"--.•--.». * . - - K -"»• .>' 
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causes a rather slowly growing instability.  It is also 

shown that even in the one-dimensional case that the 

envelope soliton appears to be unstable upon encountering 

a second wavetrain of substantially different wave numbers 

than those of which the soliton is constructed.  This does 

not violate the conclusions of Zakharov and Shabat (1972), 

ie., solitons are stable when interacting with other wave- 

trains described by the same nonlinear Schrodinger equation, 

since the two wavetrains of substantially different fre- 

quencies each satisfy different nonlinear Schrodinger 

equations. 

i 

I 

ä 

MM^tititi^ .:    mm* 



2.  THE EIGENMODE EQUATIONS 

Consider a current at the ocean surface represented 

by a superposition of modes parallel to the x axis, 

U^t) Y." cosKC (2.1) 

K 

where £ = x-c t, and c  is the velocity of the current 

profile.  Each mode in Eq. (2.1) has a wavelength 2T\/K  and 

amplitude U .  The equation describing the linear inter- 

action of a surface current of the form of Eq. (2.1) and 

the linear wave field at the ocean surface was found in Case, 

Watson and West (1974)*, to be of the form of a Schrb'dinger 

equation. 

Following the notation of III we define the complex 

amplitude 

Z(r,t) ■I a(k) exp(ik«r) (2.2) 

where r = (x,yx is a horizontal vector on the ocean 

surface.  The surface elevation may be written in terms 

of the complex amplitudes as. 

h(r,t) - - Im [z(r,t)] 

.i[ut. t) - z (r,t)] (2.3) 

This report will hereafter be referred to as III. 

^^^^^^ SKS 
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The equations describing the interaction between the 

surface wave field and the surface current are written 

in model form in Watson, West and Cohen (1973) , in terms 

of the variable 

c(k) = a(k) expd^Cjt) (2.4) 

.V 

^ 

rather than a(k).  The wavenumber k  is the horizontal 

wavenumber parallel to the surface current.  The resonant 

coupled mode equations are, 

ic(k) = {VkxCI)c(^) +/_j   [
A(")(k,K)c(k-"K) + A(<')(k,K)c(k+K)] 

K ■' 

s 

-Z T-^ c(I)c(p)c (n)exp 
t * * *P 

i(k +n -A -rj  )cTt X  X   X ' X   I ->■->■->-♦- 

kn 
(2.5) 

where the coupling coefficients V       are given in Part I, 

the A    (k,K) are given in 11 and the effects of wind, 

viscosity and surface tension have been neglected for the 

moment. 

In III the linear part of Eq. (2.5) is reduced 

to the form 

i 4 - H* (2.6) 

where  H  is   a   hermitian matrix  and  ijj   is  related   to  c(k)   by 

a  linear  transformation.     In the  followina   sections 

This  report  will   hereafter be  referred  to   as   II< 

kMSÜM^ 
• *" * 
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Eq. (2.6) will be generalized by keeping the nonlinear part 

of Eq. (2.5) in the analysis and constructing a nonlinear 

equation of evolution for the envelope function of an 

initially isolated wave. 
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2.1  THE ENVELOPE FUNCTION 

If we define the x component of the surface waves 

to be in the directioi of the current given by Eq. (2.1), 

then we may proceed as in III and parameterize the depen- 

dence of the surface wavenumber on the direction orthogonal 

to the current.  We write the surface wavenumber as 

$■ I—2 2 
•^ k = V^ + P  ' where p is a parameter.  Further, since 

0\ k >> K for all surface waves of interest on the ocean, we 

write 

kx = nK '    n = 1, 2, ... (2.7) 

so that the wavenumber component parallel to the current 

is a multiple of the surface current fundamental wavenumber (K). 

Equation {2.7)   allows us to lewnte Eq. (2.5) in 

terms of the discrete quantities 

*(n) ^ yn
1   c(jt) (2.8) 

so that 

i^n) - Er^(n) + Vn^n+1 ^(n+1) + Vn n_1 ^(n-l) 

" Z-. Vn-£-m ^m V£Ym ^^^(O^m) exp [-i (iL+m-q-n) fit] 
q,l,m 

(2.9) 

^>^'->>^>^«»K■'■>~■>^1«>'^«'V>^'0,>0,>^>" ^^^teM^y-y^-y-k:^^ 



where 

E  S « - nß  , n   n 

Yn+1  {+) v   ,, — A   (n) n,n+l    Y       »• /   i 
'n 

n.n-i    Y 'n 
(2.10) 

ML ■• M   , and ü  is the frequency of the surface current 

(= KCj).  If we now choose the transformation coefficients 

to be 

Yn-1/Yn E [A^n-D/A^d»)] (2.11) 

so that 

V  A, - •\/A
(

 
+

 
)
 (n) A( ) (n+1) n,n+l    v 

Vn,n-1 = VA(+) (r-D A^5 (") (2.12) 

the matrix V will be symmetric.  Equation (2.9) now has 

the form 

i ffn) = [(K+V)^](n) 

- )  6       rnq YqY£Ym        *      r 1 /_,  q+n-i-m '   -»-i— ${%)${*)$   (q) exp I i (n+q-£-m)ß t I 
i?, m, q Yn 

(2.13) 

8 
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I 
the linear part of which is given b^ Eq. (2.6) , with 

K  , = E  6  , nn'    n  nn' 

If we consider a solution to Eq. (2.13) of the form 

iHn,t) = 0 
(M) 
— <I)(n,t) exp(-iEMt) (2.14) 
'M 

which is a simple wave of wavenumber k.. at t = 0 

♦(n.t-O) = Jn M Q
(M,//2 YM , 

I i.e., lim <l>(n,t) ■»■ 6nM, we obtain from Eq. (2.13) 
t-vO nM' 

I 
Ä 

i *(n) = (En-EM) *(n) + vnin+1 »(n+l) + v^^j »(n-1) 

ET (M) I  Y Y Y h  ^  LV~J  ^ Y ^ •()l)#C«)»*(q)«cp[-l(n+q-l-iii)Qt] 
n+q=Jl+m 

(2.15) 

Using the complex amplitude defined by Eq. (2.2), the 

relations (2.4) and (2.8) and from II 

c(it)    E  q      exp(-ia), t)//2 (2.16) 

we may write 

'iSZ^il^^^ ^■\.\*.    'S.    ".  _*. ^% L"".  _ ', 
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Z(r 
ZY  l'(n) 

^ "Tl  exp[i(ltn.r-nfit)J (2.17) 

where k =-\]{nK)     + p .  In 

Eq. (2.17) can be written 

terms of the solutions (2.14), 

Z(r/t)   - ^ 
(M) 

[i^M^-M^lZ 
An 

kM  ^n 
kn   YM 

$(n,t)   expliAnKU-c^t)] 

(2.18) 

(M) where An = n-M,^ = x - Cjt and c   is the group velocity 

of the central mode.  The sum on tne right-hand side of 

Eq. (2.18) defines the envelope function for the initial 

wave, i.e., 

(M) /    $(n,t) expdAnK?') 
^■r,  YM 

An 
kn YM 

(2.19) 

and is expected to be slowly varying (^, = x - (c +c^M^)t). 
■L    y 

The evolution of  the  surface modulation can be obtained 

from the  dynamic equation  for  the  envelope  function.     Taking 

the  derivative of  Gl   '   with respect to time   yields. 

3G 
8t 

(M)        Y"1   k     Y r ,   s  1 
- l^   j^-y1      [-iAnKcI$(n)   + MAüI J exp (iAnKC) 

n 

or  equivalently, 

^a^i^^^L^^^^- «•«. 
n n   YM 

10 
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Equation (2.20) may be evaluated by substitution from 

Eq.  (2.15). 

To simplify the nonlinear term in Eq. (2.15) we 

rewr{ te the restriction on the sum  in the integral form 

W 

^  /  exp[i(n+q-l-m) «r ] d' 

^3 
.V 

Ööt cT 

over the area of ocean W.  If we further assume the nonlinear 

interaction to be local, so that the interaction coefficient 

is strongly peaked about k,., we set r(M) E  ^ "^ ^ r*?q to be a M k     Jim n 

constant.  The cubic term in Eq. (2.20) may then be expressed as 

i fo (M) 

h: I _  ^(M) [f]    ^*U) exp(iA",kC) >♦(») 

Y   * 
exp(iAmK^) ^ $ (q) exp(-iAqK^) 

q 

and using the definition of the modulation function, 

Eq.  (2.20) reduces to 

a 

i 
I 

^9t  +  CI   3xj 
(M) C(M)    ^(M)^   G(M) 

+ hr^[{En-V   ^n)   +Vn,n+1   ^n+1)   +Vn,n-1   ^^ 
An * An 

x   exp(iAnK)    . (2.21) 

11 
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The cubic coupling coefficient is given by 

C(M) - 1 /Q 
~ 2 Ik 

(M)V 
-   I 

(M) 
M / 

so that using the diagonal nonlinear coupling coefficient 

.MM 
MM 

we have 

-w  from Part I since equations are in terms of slopes. 

C{M)__1 M 
~  2 WM [Q

(M)
] (2.22) 

We can expand the diagonal matrix elements of the 

Hamiltonian (K+V)(n) about n = M to obtain 

3E    .  M; 2 82E 

Using  this  e.-cpansion allows  us  to  sum the  first  series 

in   (3.14),   i.e, 

Z 
An 

kMYn 81E:M   *rW i 
^   (En-EM).(n,t)exp(iAnKC) «   "i  ^ ^ -  \ >%   32G(M' 

M 

(2.23) 

The second series may be summed in a similar manner when 

the current has a harmonic decomposition, i.e., 

L ^ ,n+i
$(n+l)+Vn/n_10(n-l)]exp(iAnKU = kMUG

(M) -iA[UG(M)] 

An 

Since E^. ' UL.-MQ , we have M    M 

(2.24) 

8kM   " M  K   Cg     CI (2.25) 

12 
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the difference between the group velocity of the central 

mode and the phase velocity of the current patvern.  Using 

Eqs. (2.23) - (2.25) in (2.21) yields 

(K + <^) Ä + %) ^•> G 
(M) 1 ..  3

2G(M) 

8x [v- .<M) |_{M) |2V,vM) J' 

where üJ'.' M 

d a) 
(2.26) 

M 

K 
F.quatiou (2.26) is the equation of evolution for 

the envelope function G*  .  In the absence of a current 

ar i in a coordinate system translating with the group 

velocity c (M) , i.e., 5 = x-c (M) t, Eq. (2.26) can be 
y g 

written 

dG 
(M) 

it 
1 
2 

0) M 
82G(M) 

8C2 
- C (M) lG(M) ,2 G(M) 

(2.27) 

which is immediately identified as a nonlinear Schrödinger 

equation. The discussions leading to Eq. (2.27) have been 

varied, some based on scaling arguements, e.g., Diprima, 

et al. (1971), Benney and Newell (1967), and more recently 

on the averaged Lagrangian approach of Whitham, e.g., Lake 

and Yuen (1975). This later approach was also used taking 

into account dissipatioii by Davey (1972) to derive (2.27). 

C 

13 
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In addition to the wave-wave nonlinear interaction, 

the current interaction and the dispersive effects of the 

wave field, we introduce a linear model for the generation 

of waves by wind and their viscous decay 

a M T! [^ sign(kM) 
M M' ..] (2.28) 

where \i  and v are the wind and viscosity coupling strengths 

respectively.  Including these terms in the equation of 

evolution of the envelope function yields 

= [V-CR
(H, 1G

(M)
|
2
]G

(M)
 . (2.29) 

The nonlinear coupling coefficient is imaginary in the non- 

conservative system, i.e., C^M^ S C D^ + i CT^M^ .  Note R        I 

that the wind coupling model is intended to demonstrate the 

effect and not to provide a "realistic" generation terra 

for the wind.  In calculations this term would be replaced 

by the Phillips-Miles linear model of wind coupling to the 

air-sea interface. 

14 

1* a^a^j^^^ ■tfv^ ltil&^^ 



f 

\> 

Jl"' 

f. 

,v 

2.2  THE CÜNSERVATIVE SYSTEM 

Consider the form of Eq. (2.28) for an inviscid 

fluid in the absence of wind and with no current present. 

If we also suppress the index of the central mode (M) then 

i < 
dG , 8G 
at + w ax + 5-(i»,,-2-| + C lG|2 G - 

9x 

Assume a solution to Eq. (2.30) of the form 

G(x/t) = A(x,t) expri©(x,t)] 

(2.30) 

(2.31) 

i 
is 

.-- 

h 
w 

where A and (D are real.  Using  (2.31) in (2.30) and equating 

real and imaginary parts yields 

xx -d>x
2A - -i- [®t   + a)1 (Dx - CA

2
1A = 

f®xA2l + ^"[At+W,A-]A=0 (2.32) 

where the subscript notation for partial derivatives has 

been adopted and '  denoter. a derivative with respect to k. 

We identify the derivatives of the phase function 

with a wavenumber (K) and frequency (n), 

--<. 

U 
v 

M 

K    =    ® X n - -0t 

15 
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so that (2.32) becomes 

xx 
2A   2 r K A -    - n + KW' - CK' 'h- 

[K A2]x + ■— l\  + •'*«)* ■ 0 
0)" 

(2.34) 

The first of Eq. (2.34) can be integrated under the assump- 

tion that K and fi are constant to yield 

(Ax)
2 = -i- [-n + Kw' + j  K2W" - | CA2]A2  .      (2.35) 

Cü" 

The solution to Eq. (2.35) is 

with 

A = A^ sech B(t - x/v ) 

2 2   o 

(2.36) 

B 
w 

h 

M /   o g (2.37) 

From the second expression in Eq. (2.34) we have 

A  + (u)' + K (JJ"') A = 0 (2.38) 

so that the amplitude is constant along the trajectory 
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dx 
dt V  = W' + K (JJ

1 

(2.39) 

i 

The solution to Eq. (2.30) is therefore 

G(x,t)   = Ao  sech \( c\H 1 
l ÜT""/A-fx~vgt)    exP iOcx- Ot)    (2.40) 

which is both localized and stationary as discussed by 

Hasegawa and Tappert (1973a,b) .  The quantity (-^j 

is seen from Eg. (2.22) to be related to the slope of 

the central mode [^ kM Q
(M)], so that again using indi 

Vy_e have 

ces 

ft >■ 

(M) 
Gv   '(X,t)        Ao   sechj /2   kM QVM;A0 ■[' 

(M) (x-vg
(M) t)J   exF   ifv-^t] 

(2.41) 

1 ̂
7 
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3  STABILITY OF FINITE AMPLITUDE WAVES 

In a now classic experiment, Benjamin and Feir (1957) 

mechanically generated a wave of fairly large slope (.17) on 

the surface of a water tank.  Perturbations of this wave 

located at sidebands of the initial wavenumber induced a 

modulation o?  the generated wave.  The location of these 

sidebands were determined from a pertarbation analysis 

and found to grow exponentially out of the background noise 

in the surface wave spectrum.  This instability wa« ob- 

served experimentally as a randomization of the finite 

amplitude wave some distance from the wave source.  A 

numerical calculation of this break up process using the 

third order nonlinear modal equations was done in Part I 

for deep water waves. 

Hasimoto and Ono (1972) have shown, using a pertur- 

bation expansion of the dynamic equations for watc^r waves, 

that the envelope function of the first order surface wave 

amplitude satisfies an equation of the form (2.30).  Their 

analysis indicates that a nonlinear plane wave solution to 

Eq. (2.30) yields a second order Stokes wave profile for 

the surface elevation.  The critical results of Benjamin 

(1966) and Whitham (19G7) for shallow water wave profile for 

reproduced, i.e., the dynamic equation changes character 

from elliptic (Kho < 1.36) to hyperbolic (Kh  > 1.36) where 

K is the wavenumber of the wave train and h  is the depth of 

the water. 

ü&itä^^ 
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Whitham (1957) determined that the coupled raodulacions 

of the phase and araplitude in the averaged Lagrangian approach 

is equivalent to the sideband modulation used by Benjamin 

(1966) and later by Benjamin and Fier (1967).  Recently, 

Lake and Yuen (1975) have shown that Eq. (2.30) can be derived 

from an averaged Lagrangian when the spatial variation in 

the envelope function is not neglected.  One may also derive 

Eq. (2.32) iu a coordinate system translating with the velocity 

a)' , i.e., E,  = x-w't, from the Lagrangian. 

L.| m2+*2 m 1 + i 
kH7 J ' w " 9t "   2ü)" 

(3.1) 

where A and© are defined in Eq. (2.31). The  equations of 

motion are obtained from the variation 

/ L[A, |f, ||,«, I*, ff] VF, T-f    dxdt = 0 (3.2) 

to be 

ä 

3 
3t 

3L 
+ k 

3L ml 
8 
at 

3L *k M 

3L 
3A 

3L 
(3.4) 

Equation  (3.4), using (3.1) is identical to Equation (2.32). 

This system behaves like a particle under the influence of 

19 
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a central potential of the form 

V(A. @,  .  -^HA^J^A^ (3.5) 

as discussed by Watanabe (1969). 

To examine the instability of the finite amplitude 

wave, we extend the arguments of Hasimoto and Ono slightly 

and consider the envelope function 

G(x,t)  = (Ao + eA
(1)) expi{icx-nt+ce) (3.6) 

where Ao, K and Q are constants, A( ' and 9 are functions of 

x and t, and e is a smallness parameter.  Substituting 

Eq. (3.6) into (2.30) and linearizing with respect to e 

yields. 

^ + 2 w" Ao 8« - 0 

Aoet  "  I ""    tpx     ~  2CAo2  A(1)   =   0 (3-7) 

where  it  is  determined that 

fi  =  KW'   + | K
2

^"- CAo
2 (3_8) 

as found in Section 2.2.  Equation (3.7) is defined in a 

coordinate system translating with a velocity w' + KOJ" , 

i.e. , £ =■ x - (OJ
1
 + KCO" ) t . 

20 
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To determine the stability of the solutions to 

Equation (3.7), we substitute the second equation into 

the partial time derivative of the first to obtain 

:v 
A solution to Equation  (3.9) of the form exp [i (k^x-o^t) ] 

yields the dispersion relation 

.,,. ^2 
u. w 

-   (kl2 - «tl/»") (3.10) 

which, since C/w" > 0, has unstable solutions when 

i 

9 

2Ao Vc/W" > k1  . (3.11) 

Using the value of C/w" obtained in Section 2.2, we have 

the condition 

3/2  ^n(I' o lyr (2)^ '  A k.n^^ > k. (3.12) 

where Q   and kM are the initial slope and wavenumber of 

the central mode. 

Condition (3.11) is just that obtained by Benjamin 

and Fier (1967) for the stability of a finite amplitude 

wave.  The amplitude of the sideband (a,) grows like 

a^ r- exp( Y t) 
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where from Eq. (3.10) 

y = ^ I^KM2-*2)172- (3.13) 

(M) with uM the frequency and Q   the initial slope of the 

central mode, and 6 the fractional change in the frequency 

induced by the nonlinearity.  Taking the variation of y 

(M) 
with 5, we determine 6   = Qv ' A . so that the initial slope 

luciX O ■ 

of the central mode determines the position of the sidebands 

receiving maximum amplification, i.e., w+ = jl ± Q   A Id) 

and k± - [1  ±   2Cr  AojkM. At these wavenumbers the growth 

rate is 

Y = + /2 u. (KA ) k  o 

On writing m - KAo fcr the slope of the large amplitude 

wave, we see that 

BF (/? u. m ) (3.14) 

describes an e-folding time for the Benjamin-Feir interaction. 

Reference to the nonlinear term in Eq, (2.5) suggests that 

can be taken as a characteristic time scale for nonlinear BF 

interactions to develop. 
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3.1  COMPARISON WITH THE FEIR EXPERIMENTS 

.« 

S 

The numerical code described in Part I integrates 

Eqs. (2.5) for a specified set of modes, but is restricted 

to one-dimension, with all wavenumbers parallel to, say the 

x-axis.  A "fetch" L is specified with periodic boundary 

conditions at x = - •=- and x = »-.  The mode spacing is 

Ak = 2TT/L. 

To integrate Eqs. (2.5) with c =0, ie., no external 

current, the initial amplitudes a (0) (k = nAk, n = 1, 2, 

...) at t = 0 are specified. 

If the initial state of Eq. (2.5) is prepared to be 

that of a soliton, then the nonlinear interactions should not 

chanje the surface structure, i.e., the soliton should persist 

as it propagates along the water surface.  The initial condi- 

tions for Eq. (2.5) are obtained by taking the Fourier trans- 

form of the envelope function at time t = 0, to obtain the 

mode amplitudes 

00 

an(0) = j; J G(5,0) exp[i(K - kn) ?] d^  ,       (3.15) 

where G(C,0) is given in Eq. (2.41).  Integrating and norma- 

lizing Eq. (3.15), we obtain for the mode amplitudes of an 

initial soliton 

an(0) » aN(
0) sech 

(N - n) rrAk 

/8  m K 
(3.16) 

with the central mode given by wavenumber K ■ NAk and m the 

slope of the soliton. 
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In calculations, Eq. (3.16) is used to represent the 

initial soliton by a finite number of modes.  In Figure la 

is shown an envelope function constructed from fifteen modes 

with the parameters, K ■ 0.2516 cm  , Ak = 0.01 cm"  and 

m = 0.064, where m is the slope of the soliton.  This envelope 

is given by the absolute value of 

V qn(t)        r 1 G(x,t) = )  -2  exp|i(N - n)Ak(x - c t) 

n 

(3.17) 

where 

Cg E ^n"
w
N)/Ak(N - n) 

is the group velocity of the central mode and the slope 

variables from Eq. (2.16) have been used.  The modal rate 

equations in Part I are written in terms of the mode elopes, 

i.e., the q's, so that in Fig. 1 and in all subsequent figures 

involving the envelope, it is the absolute value of Eq. (3.17) 

that is plotted.  The mode slopes for Fig. 1 are listed in 

Table I. 

In Fig. lb the displacement of the water surface is 

depicted for the above soliton.  The surface displacement .'s 

described by Eqs. (2.2) and (2.3).  The parameters for this 

example were selected to correspond to the wavepulse exper- 

iments conducted by Feir (1965).  The initial amplitude of 

the central mode in Eq, (3.16) is obtained  from the exper- 

iment using the expression 
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?ABLE I:  Slope amplitudes [see Eq. (3.16)1 for the "solitons" 

studied. 

Mode Number 
n - N 

Mode Slope Amplitudes of SolitonG -  q (0) 
n 

-7 

-6 

-5 

-4 

-3 

-2 

-1 

0 

1 

2 

3 

4 

5 

6 

7 

Viscosity 
coefficient-v 

Soliton 
Slope-m 

Central 
Wavenuraber-K 

Mode 
Spacing- k 

Non]inear 
Growth time-T 

2.33 

5.36 

1.2. 

2.66 

5.6 

1.03 

1.41 

1, 

7, 
4, 

2 

1. 

22 

73 

34 

34 

25 

6.64 

3.5 

10 

x 10 

x 10 

x 10 

x 10 

x 10 

x 10 

x 10 

x 10 

x 10 

x 10 

x 10 

x 10 

x 10' 

x 10" 

-4 

-4 

-3 

-3 

-2 

-2 

-2 

-2 

-3 

-3 

-3 

-3 

0.47 cm /sec 

0.064 

0.2516 cm-1 

0.01 cm-1 

11.0 sec 

« x 10 

9.32 x 

2.14 x 

4.84 x 

1.06 x 

2.24 x 

4.12 x 

5.64 x 

4.88 x 

3.09 x 

1.74 x 

9.36 x 

5.0 x 

2.66 x 

1.4  x 

-5 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10" 

10 

10 

10 

10 

-4 

-3 

-3 

-2 

-2 

-2 

-2 

-2 

-2 

-2 

-3 

-3 

-3 

0.19 cm /sec 

0.256 

0.2516 cm 

0.01 cm"1 

0.69 sec 

-1 

BF 

■•/• 

JL&±±±&7.<lfli<Zi<t<-.., 
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aN(0) - G(x=0) 

where m - 0.064 and G(x = 0) = 0.254 cm for the first trace 

in Fig. 3 of Feir (1965) yielding 8^(0) = 0.056 cm.  The 

slope of the soliton is given by the sum of the mode slopes, 

i" i.e.. 

T% '       *   /       1n(0) (3.19) 
k 

n    n 

which is also equal to the central wavenumber times the 

maximum surface displacement. 

Figure 1 analytically models the shape of the pulse 

generated in Feir's experiment as measured four feet from the 

']  }S w^ivemaker.  At a distance of twenty-four feet fxom this 

point, i.e., twenty-eight feet down the tank, the pulse 

amplitude is one half its initial value.  This damping of 

the pulse is simulated in the present calculation using a 

phenomenological viscosity coefficient in the rate equations. 

The linear amplitude damping coefficient yields 

G{x,t) = G(x,0) exp (-at) (3.20) 

where t is given by the ratio of the distance traveled to 

the group velocity.  The decay rate is given by a ■» 0.03 
-1     . ? sec  , or in terms of the viscosity coefficient v = a/K 

2 
- 0.4 7 cm /sec. 
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Feir's discussion does not include the concept of 

a soliton.  The analysis of Chu and Mei, (1970) however, 

compares the evolution of the pulse modeled as a soliton 

with the experimental results.  As they pointed out the 

dominant effect is the attenuation in amplitude due to the 

short time of evolution; i.e., short compared with the 

e-folding time which is given in Table I as 11 sec.  In 

Fig. 2 the results of the present calculation are given for 

the pulse after 24 seconds or approximately 24 feet from 

the initial point.  The shape of the pulse is virtually 

unchanged from Fig. 1.  The normalization has changed from 

0.254 en, however, to 0.115 cm; a 0.45 reduction in amplitude. 

Feir describes the launching of six pulse shapes, 

all with the same central mode number and length cf modu- 

lation, but with increasing amplitudes,  ahe simulation 

of run (1), shown in Figs. 1 and 2, indicates that this 

pulse is very close to a soliton in shape.  The remaining 

runs, with their increased amplitudes, must therefore not 

be solitons.  The modulation instability of these waveforms 

causes these pulses to breakup into one or more stable 

solitons as discussed by Hasimoto and Ono (1972).  This 

interpretation is consistent with what is observed in the 

latter runs of Feir [1965]. 

In Fig. 3 the last of the six runs from Feir (1965) 

is simulated.  Since only the amplitude was increased between 

this and the first run, the mode slopes of the soliton are 
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simply scaled by a factor of four to corrp^ond with the 

experiment. The viscosity coefficient has been modified 

in this case to again give the gross attenuation of the 

pulse.  These quantities, along with the slope of the pulse 

■        are listed in the second column of Table I. 

The initial pulse is depicted in Fig. 3a, as it would 

be at the wave generator rather than at four feet along 

the tank as was the soliton in Figs. 1 and 2.  This is 

admittedly not a complete simulation of the experiment. 

After traveling 28 feet down the tank, however. Fir. 3b 

shows the same general structure observed for the breakup 

of thcb initial waveform. 
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4.  STABILITY 

We discuss first the stability of the soliton solution 

to Eq. (2.27) given by Eq. (2.41) when a small sinusoidal 

ripple is impressed on it transverse to the direction of 

soliton propagation. 

Equation (2.27) may be rewritten in a coordinate sys- 

tem translating with a velocity c  parallel to the x-axxs, 

i.e., ^ = x - c t, in two dimensions in the more convenient form 

3_G 
at 

U) K 

8K' 
4-   24+4K2    |G|2G 
H ay 

(4._) 

From Eq. (4.1) we obtain the relation for the wave energy 

(in scaled units) 

i& |G|2 
0) K 

8K' 
J_     fr*   1G       r   dG 

SI   r   ?,' " G är -2# 9y ~ G ly 

(4.2) 

A solution having finite extent in the ^-direction and periodic 

boundary conditions in the y-direction then satisfies the 

energy integral 

I  |G|  d^ dy = constant (4.3) 

over the surface area Z.     A developing instability thus 

extracts energy from the soliton. 

*This section is taken largely from Cohen, Watson and West (1975) 
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The solution of the nonlinear Sch:.üdinger equation 

which we investigate is of the form 

G - Gs + Y{C,t) cosUy) exp(-iWKm^t/4) (4.4) 

where G represents the soliton solution (2.41) and Y is 

assumed to be very small relative to the amplitude of the 

soliton.  This is our transverse perturbation.  Tt is con- 

venient to introduce the dimensionless variables 

i   =  wKt/8 

s E /2 m K C (4.5) 

i 
and to write the perturbation amplitude as the complex function 

Y(s,t) =  U(s,x) + i V(S,T) (4.6) 

i 

I 

where U and V are real.  Substituting expression (4.4) into 

the equation of evolution (4.].), linearizing in Y, and equa- 

ting to zero the real and imaginary parts of the resulting 

expression, yields the coupled equations 

9V   3 U 
3T 

+ (H + W)U 
as 

and 

dU       3 V 
3T 

+ (H - W)U 
3s' 

(4.7) 

The  coefficient  functions   in Eq.    (4.7)   are  given  by 

33 

E 
.v.".- ' •V V v" vV." ■UO -'W- o -> -'" ^ • ^■Cv''- ■■-",'.-V-f.. ■". < . J-'-C. <. ^"-V-V. 

\J\\ I-.VJV'.'V""-,-/.! 



H  =  Q  -   1  +   4   sechP(s) 

W =  2   sech   (s) (4.8) 

and 

Q -   £2/(iiiK)2 
(4.9) 

Consider  first  the  case of a  simple  exponentially 

growing  instability,   for which we write 

U =  u(s)   exp(ET) 

V ■  v(s)   exp(ET) 

When substituted into Eq. (34) this yields 

-Ev ■ u   + (H h W)u 

Eu = v   + (H - W)v ss (4.10) 

where the subscript notation for derivatives has been adopted, 

i-e-, us ä du/ds, etc.  For scable oscillating perturbations 

we would, on the other hand, write 

U = u(s) sin (Ex) 

V = v(s) cos (ET) 

which  when  substituted   in   Eq.    (4.7)   yields 

Ev ■  u       +   (H  +  W)u 
o ■ > 
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Eu = v   + (H - W)V ss ' (4.11) 

* :j jV rf 

>k; 
.-,• t; 

Since neither set of Eqs. (4.10) and (4.11) is self- 

adjoint, we have no a priori assurance that nornializable 

solutions will be found with E real. 

At this point it might be observed that our discussion 

is similar to that of Schmidt (1975) who studied the stability 

of a plasma wave soliton.  His soliton was of the form (2.41), 

but his equation describing the transverse perturbation was 

somewhat different from Eqs. (4.7).  Schmidt observed that 

for the case 

i 
.-. 

Q = E = O 

Eqs. (4.10) and (4.11) have two sets of solutions 

Even Parity: v = v   - sech s 

u = 0 

?   V 

Odd Parity; v = 0 

u . u(0) . dv(o)/ds (4.12) 

where the superscript indicates the condition Q = E = O. 

The solutions Eqs. (4.12) suggest using perturbation 

theory to analyze Eqs. (4.10) and (4.11) for small Q, or long 

wavelength perturbations. Consider first the odd parity case 

and define the operators 

fi 
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L =   (d2/ds2) + 2 sech2 s - 1 

L' E (d2/ds2) + 6 sech2 s - 1 (4.13) 

Equations (4.10) can then be rewritten 

L'u = - Ev - Qu 

L'v = Eu - Qv + 4 v sech  s (4.14) 

and  using Eq. (4.12), 

I/u(0)= 0 (4.15) 

Multiplying both expressions in Eqs. (4 14) by u^ and 

integrating over all s, using Eqs. (4.15) and substituting 

the first expression into the second, yield? 

2    2 
E^ = -Q  + 4Q 

00 

r  (o) I  U V  ' V sech  s ds '/ u<0' V ds 

(4.16) 

If we write the solution to Eq. (4.14) as a first order 

correction term. 

v = E v (1) (4.17) 

then from the second expression in Eq. (4.14), to lowest 

order in E and 0, we obtain [see Eqs. (4.13)1 

L v(1) - u(0) 
(4.18) 

36 

i^^^^ 



g 

iwm9^-jmm">*j\m^^\mjimji Hiitiiv^fi 

To evaluate   the  ratio  oE  integrals   in Eq.    (4.16)   and 

thereby obtain the  eigenvalue  E,  we use the relations 

s 
J    a'0»,«1' seoh2 , d. .-l.-l  f [u«»]2dl 

00 00 

/  u'0' v'i'ds = - i = - i /[v«»]2äs   . 

si 

i 
y 

I 

c 

i 

The first of these relations derives directly from Eq. (4.14), 

whereas the second is the result of a numerical integration. 
2 

Neglecting Q  in Eq. (4.16) we obtain the eigenvalue 

E *   1.16 Q 1/2 (4.19) 

Equation (4.18) was numerically evaluated for later use. 

Also the above integrals were evaluated numerically as a 

test of the solution. 

An analysis similar to the above, starting with the 

even parity zeroth order solution [see Eqs. (4.12)1 gave 

stable, oscillating modes [the case described by Eqs. (4.11)1 

for small Q.  This contrasts with the results of Schmidt 

(1975) for plasma waves, where the even parity solution was 

unstable. 

For a shorter wavelength perturbation, corresponding 

to Q >> 1, Eqs. (4.7) have the approximate form 

-8V/DT - Uss + (Q - 1)U 

3U/3T = Vss + (Q - 1)V (4.20) 

e 
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These equations describe the propagation of linear waves, 

decoupled from the soliton. An impressed ripple of short 

wavelength will thus tend to propagate in accordance with 

the linear dispersive wave equation. 

For Q > 1 there is no normalizable solution to Eqs. 
* 

(4.10) and (4.11) when E = O, so a transition from simple 

exponential growth to simple oscillatory behavior is not 

possible in the range 1 < Q < «>. 

Equations (4.7) were numerically integrated using the 

perturbation solution u = u(0), v = Ev(1) as the starting 

condition for T = 0.  For Q £ 1 simple exponential growth 

consistent with the result (4.19) seemed to occur (for the 

two exponentiating periods that the calculation was continued). 

For Q = 2 the U and V solutions oscillated.  Growth was not 

observed within the accuracy of the calculation, but propaga- 

tion away from the soliton did occur.  For Q = 1.5 propaga- 

tion away from the soliton was observed, but at a slower rate. 

Some growth seemed to occur.  The oscillatory motion for the 

larger Q value is consistent with our conclusions based on 

Eqs. (4.20). 

Defining the e-folding rate y  by the relation yt  = Ex, 

*In this case, Eqs. (4.10) and (4.11) are each equi- 
valent to a one-dimensional Schrodinger equation with an 
attractive potential.  If Q > 1, this would correspond to a 
bound state of positive energy. 
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we have suiraiarized i.i Fig. 4 the instability discussed above. 

The quantity YTBF [Eq. (3.14)] is plotted against Q1^2  - t/(mX), 

Due to the limited accuracy of our calculations, the growth 

rate in the interval Q > 1 is not shown. 

We now discuss the propagation of two specific solitons 

through a train of waves of wave number significantly different 

from that of the soliton.  For both solitons the interval L 

was chosen as 100 m, so the wave-number interval was Ak = 

0.0628 m The starting Fourier amplitudes were obtained 

using Eq. (3.16).  The initial slopes q (0) are given in 
n       J 

columns (3) and (4) of Table I. 

The soliton of column (3) has a central mode number 

N = 10, with amplitudes in the range 6 < n < 14.  We shall 

refer to this as the "fat" soliton, since its broad spectrum 

would seem to violate the conditions under which the nonlinear 

Schr'ddinger equation was derived. 

Equations (2.5) were integrated for an interval of 

20 seconds for the fat soliton with the initial conditions 

of column (3) in Table I.  The wave height £, as obta; ned 

from Eq. (2.3), is shown in Fics. 5a,b at t = O and 50 sees 

for the fat soliton and in Figs. 6a,b for the "thin" soliton. 

The corresponding envelope function G for the thin soliton 

is shown in Figs. 7a,b for t = 0 and 50 sees.  Again no dis- 

tortion is discernable. 

We now study the interaction of these two solitons 

with other wavetrains.  For the first case we let the thin 
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5;oliton interact with shorter wavelength waves, corresponding 

to the mode numbers n = 32 and 33.  The starting slopes at 

t = 0 were q32(0) = O-1 and ^33 (0) = 0-15, with respective 

phases of 0° and 45.  The wave amplitude 5 is shown in Figs. 

8a,b,c at t = 0, 30, and 50 seconds, respectively.  The 

envelope function G is shown at these times in Figs. 9a,b,c. 

Little distortion has occurred at 30 sees.  At 50 seconds, 

however, the soliton edges show an appreciable dLstortion. 

It is here where G is small that a modest phase distortion 

can most readily upset the cancellation of Fourier amplitudes. 

These results certainly suggest that eventually the soliton 

would be destroyed by interaction with a spectrum of short 

wavelength waves. 

The next example of soliton interaction involved a 

train of long wavelength waves, with mode numbers n = 6 and 

7.  The starting slopes were q6(0) = 0.1 and q'O) = 0.15, 

and the thin soliton was again used.  The displacement C is 

shown in Figs. lOa-f at various times in the interval 0 < t < 20 

seconds.  Marked distortion occurs at 2 sees, about one wave 

period at the soliton carrier frequency.  The soliton substan- 

tially reconvers its shape at 10 seconds and then again at 

20 seconds.  It would appear that the soliton is being com- 

pressed and stretched by the orbital fluid velocity of the 

interacting wavetrain and that this is to some extent rever- 

sible.  To investigate this further, the above calculation 
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w as repeated but at 10 seconds the amplitudes q^ and q_ were 
6       / 

set equal to zero.  At this time the soliton has the from 

shown in Fig. lOd.  At 20 and 50 seconds it has amplitude 

shown in Figs. 11a,b.  The corresponding envelope function 

is shown in Figs. 12a,b at 20 and 50 seconds.  It is not 

clear in this time interval that the soliton is undergoing 

a progressive distortion.  The leading edge (to the right) 

of the envelope function does seem to be steepening somewhat 

at 50 seconds.  A similar asymmetric distortion was noted 

by Lighthill (1967). 

The final illustration studied of soliton interaction 

was that of the fat soliton interacting with a train of longer 

waves.  These corresponded to modes n = 3 and n = 4, with 

scarfing slopes q3(0) - 0.06 and q4(0) = 0.09 and respective 

phases of 0° and 45° .  The soliton is shown in Figs. 13a-d 

at times from 0 to 20 seconds.  The soliton in this case 

does not seem to recover, but progressively losses its initial 

waveform.  It should be recalled that this was thought to be 

a "marginal" soliton. 

The above examples suggest that a random field of waves 

of wavelength much shorter than that of the soliton will 

probably break up the soliton, but rather slowly.  A random 

wave field of much longer waves can probably destroy a soliton 

in a few wave periods.  A periodic train of long waves dis- 

torts the soliton, but it shows some recovery. 
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SUMMARY AND CONCLUSIONS 

A nonlinear Schrodinger equation is derived from the 

eigenmode rate equations developed in I, II and III.  The 

P solutions to the nonlinear Schrödinger equation are solitons 

which propagate without change in form as observed experi- 

mentally by Feir (1965) and Lake and Yuen (1975). 

Although the one dimensional form of the nonlinear 

'v' Schrodinger equation is the same as that describing the 

propagation of an electromagnetic pulses in nonlinear optical 

fibers, the two dimensional equation is different.  A linear 

stability analysis is made for an imposed transverse ripple 

in this latter equation.  A slowly growing instability is 

found at wavelengths comparable to, or longer than, the 

length of the joliton.  A slowly developing instability is 

found also for a soliton propagating through a train of 

waves of wavelength appreciably smaller than that of the 

soliton.  A soliton propagating through a train of waves 

o» with wave-length much larger than that of the soliton exhibits 

"*        gross distortion due to the orbital fluid velocity of the 

wavetrain.  This distortion is to some extent reversible, 

;'. as the soliton tends to "recover" when the wavetrain is 

.^ damped to zero amplitude. 

W The calculations suggest that a random field of waves 

X of wavelengths much shorter than that of the soliton will 
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probably break up the soliton, but rather slowly,  A random 

wave field of much longer waves can probably destroy the 

soliton in a few wave periods.  A periodic train of long 

waves distorts the soliton, but it showo some recovery. 

This suggests that the soliton mechanism will lead to a 

measurably enhanced correlation times for gravity waves in 

a random wave field.  This speculation can be experimentally 

tested using a form frequency radar to directly measure the 

fourth order cumulant of the wave field as discussed in 

Cohen, Watson and West (1976). 
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FIGURE CAPTIONS 

Fig. 1.   The eoliton specified by the slope amplitudes of 

column (1), Table I, is shown at t = 0.  (a) The 

envelope G and (b) the wave displacement r are 

normalized to 0.251 cm. 

Fig. 2.   The soliton of Fig. 1 and its envelope are shown 

at t = 24 seconds.  (a) G and (b) f; are normalized 

to 0.115 cm. 

Fig. 3.   Wave packet with slope amplitudes given in column 

(2) of Table I is shown in (a) for time t = 0. 

It is shown at t = 24 seconds in (b). 

Fig. 4.   The e-folding rate y for soliton transverse instab- 

ility is shown in units of the Benjamin-Fier time 

scale TBF  Eq. (3.14). The quantity Q is defined 

by Eq. (4.9) . 

Fig. 5.   The "fat" soliton of column (3), Table I, is shown 

at (a) 0 seconds and (b) 20 seconds.  The surface 

displacement is normalized to 2 4.7 cm and 23.48 cm, 

respectively. 

Fig. 6.   The "thin" soliton of column (4), Table I, is shown 

ab (a) 0 seconds and (b) 50 seconds.  The surface 

displacement is normalized to 10.19 cm and 9.91 cm, 

respectively. 

Fig. 7.   The envelope function for the soliton of Fig. 6 

is shown at (a) 0 seconds with an A- of 10,19 cm 

55 

^M^MM^^M^ . •  « '_ r V ^ L w V .J. lln 



iu>i<^iwi«ii«M 

I 

m 

r. 

• ■ 

I 

I 
I 

tv 

and (b) 50 seconds with an A of 9.91 cm. 

Fig. 8.   The thin soliton passing through an infinite wave- 

train of higher frequency waves is depicted at time 

t with normalization A0; (a) t = 0, A = 10.19 cm; 

(b) t = 30, A0 - 9.9 cm; (c) 50 seconds, A - 8.4 cm. 

Fig. 9.   The envelope function for the interacting soliton 

of Fig. 8 is shown at time t and normalization A ; 

(a) t = 0, AQ = 10.19 cm; (b) t - 30, hQ  - 9.0 cm; 

(c) 50 seconds, A0 = 8.4 cm. 

Fig. 10.  The thin soliton passing through a wavetrain of 

lower frequency waves is shown at time t and nor- 

malization A0; (a) t = 0, A0 = 10.19 cm; (b) t - 2, 

A0 - 2..27 cm (c) t  =   8,   AQ  =   20.32 cm; (d) t - 10, 

A0 - 16.19 cm; (e) t - 18, AQ  - 17.11 cm; (f) t - 

20 seconds, A  ■ 18.22 cm. 

Fig. 11.  The soliton of Fig. 10 is shown for the case that 

the interacting wavetrain was damped to zero ampli- 

tude at 10 seconds.  The times and maximum surface 

displacements are (a) 20 seconds, 16.42 cm and 

(b) 50 seconds, 16.11 cm. 

Fig. 12.  The envelope function, corresponding to the calcu- 

lation shown in Fig. 11, is shown at time t with 

corresponding A0's; (a) 20 seconds, 16.42 cm and 

(b) 50 seconds, 16.11 cm. 

Fig. 13.  The fat soliton passing through a lower frequency 

wavetrain is shown at times t with corresnonding 
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AQ'S;      (a)   0   seconds,   24.07   cm;    (b)    2   seconds, 

47.49   cm;    (c)   10   seconds,   49.81  cm;    (d)    20   seconds 

and   42.61  cm. 
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